๐Ÿ“š ๋…ผ๋ฌธ

Discovering New Intents with Deep Aligned Clustering

์žฅ์˜์ค€ 2023. 8. 16. 04:12

์ง€๋‚œ๋ฒˆ A Probabilistic Framework for Discovering New Intents ๋…ผ๋ฌธ์„ ์ฝ๊ณ , ๋…ผ๋ฌธ์„ ๋” ์ž˜ ์ดํ•ดํ•˜๊ณ ์ž ํ•ด๋‹น ๋…ผ๋ฌธ์˜ ๋ฒ ์ด์Šค๊ฐ€ ๋˜๋Š” DeepAligned ๋…ผ๋ฌธ์„ ์ฝ๊ฒŒ ๋˜์—ˆ๋‹ค.

 

Introduction

์šฐ์„  ์ด ๋…ผ๋ฌธ์˜ ๋ชฉ์ ์€ known intent๋กœ labeled ๋œ data๋ฅผ ๊ฐ€์ง€๊ณ  ์ƒˆ๋กœ์šด intent๋ฅผ ๋ฐœ๊ฒฌํ•˜๋Š” ๊ฒƒ์ด๋‹ค.

์ด ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด ๊ธฐ์กด์—๋Š” ๋‹ค์Œ ๋‘ ๊ฐ€์ง€ ์–ด๋ ค์›€์ด ์žˆ์—ˆ๋‹ค:

1. ์ œํ•œ๋œ ์–‘์˜ known intents์˜ ์‚ฌ์ „์ง€์‹์„ new intent์—๊ฒŒ ์ „๋‹ฌํ•˜๊ธฐ ์–ด๋ ต๋‹ค.

2. unlabeled known๊ณผ new intent๋ฅผ ๋‘˜๋‹ค clustering ํ•˜๊ธฐ ์œ„ํ•ด ์นœ๊ทผํ•œ ํ‘œํ˜„์„ ํ•™์Šตํ•˜๊ธฐ ์œ„ํ•œ ๋†’์€ ํ€„๋ฆฌํ‹ฐ์˜ supervised signal์„ ๋งŒ๋“ค๊ธฐ ์–ด๋ ต๋‹ค.

 

์ด์— ๋Œ€ํ•œ ํ•ด๊ฒฐ๋ฐฉ์•ˆ์œผ๋กœ, ์ด ๋…ผ๋ฌธ์€ DeepAligned๋ฅผ ํ†ตํ•ด feature learning์„ ์œ„ํ•ด known intent์˜ ์‚ฌ์ „์ง€์‹์„ ํ™œ์šฉํ•ด์„œ ๋†’์€ ํ€„๋ฆฌํ‹ฐ์˜ supervised signal์„ ๋งŒ๋“ค์—ˆ๋‹ค.

DeepAligned์˜ ์ „์ฒด์ ์ธ ์•„ํ‚คํ…์ณ๋Š” ์œ„์™€ ๊ฐ™๋‹ค.

1. BERT๋ฅผ ์‚ฌ์šฉํ•ด์„œ intent feature๋ฅผ ์ถ”์ถœํ•œ๋‹ค.

2. ์ ์€ labeled data๋กœ ๋ชจ๋ธ์„ pre-trainํ•˜๊ณ , ์˜๋„ ๊ฐœ์ˆ˜ K๋ฅผ ์ถ”์ •ํ•œ๋‹ค.

3. K-means์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•ด์„œ cluster centroid๋ฅผ ๋งŒ๋“ค๊ณ  cluster assignment๋ฅผ pseudo label๋กœ ํ• ๋‹นํ•œ๋‹ค.

4. ํ˜„์žฌ training epoch๊ณผ ์ด์ „ training epoch ์‚ฌ์ด๋ฅผ ์ตœ๋Œ€ํ•œ ๊ฐ€๊น๊ฒŒ ๋งŒ๋“ค๋„๋ก cluster centroid๋ฅผ ์กฐ์ •ํ•˜๊ณ  projection G๋ฅผ ์ƒ์„ฑํ•œ๋‹ค.

5. ์ตœ์ข…์ ์œผ๋กœ pseudo-label์— G๋ฅผ ์‚ฌ์šฉํ•ด์„œ self-supervised learning์„ ์œ„ํ•ด ์กฐ์ •๋œ label (aligned label)์„ ์ƒ์„ฑํ•œ๋‹ค.


Approach

์œ„์˜ ๊ณผ์ •์„ ํ•ด๋‹น ์„น์…˜์—์„œ ์กฐ๊ธˆ ๋” ๊ตฌ์ฒดํ™”์‹œ์ผœ๋ณธ๋‹ค.

1. Intent Representation

์šฐ์„  BERT๋ฅผ ํ™œ์šฉํ•ด์„œ intent representation์„ ์ถ”์ถœํ•œ๋‹ค.

ํ•ด๋‹น ์ž‘์—…์€ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์ž‘์—…์„ ๊ฑฐ์นœ๋‹ค:

1. input sentence s_i๋ฅผ BERT์— ๋„ฃ๊ณ , ๋งˆ์ง€๋ง‰ hidden layer์—์„œ ๋ชจ๋“  token embedding์„ ๊ฐ€์ ธ์˜จ๋‹ค.

2. mean-pooling์„ ํ†ตํ•ด ํ‰๊ท  feature representation z_i๋ฅผ ์–ป๋Š”๋‹ค.

์—ฌ๊ธฐ์„œ CLS๋Š” text classification์„ ์œ„ํ•œ vector, M์€ ๋ฌธ์žฅ์˜ ๊ธธ์ด, H๋Š” hidden size ์ด๋‹ค.

3. ๋” ๋‚˜์€ ์˜๋ฏธ์  ํ‘œํ˜„ ์ถ”์ถœ์„ ์œ„ํ•ด dense layer h ๋ฅผ ์ถ”๊ฐ€ํ•˜์—ฌ intent feature representation I_i๋ฅผ ์–ป๋Š”๋‹ค.

 

2. Transferring Knowledge from Known Intents

Pre-training

๋‹ค์Œ์€ known intent๋กœ ์•Œ๊ณ  ์žˆ๋Š” ์ •๋ณด๋“ค์„ transfer ํ•˜๋Š” ๊ณผ์ •์„ ๊ฑฐ์ณ์•ผ ํ•œ๋‹ค.

์ด knowledge๋ฅผ ์ž˜ transfer ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ œํ•œ๋œ labeled data๋ฅผ ์‚ฌ์šฉํ•ด์„œ ๋ชจ๋ธ์„ pre-train ์‹œํ‚ค๊ณ ,

์ž˜ ํ›ˆ๋ จ๋œ intent ํŠน์ง•๋“ค์„ ํ™œ์šฉํ•˜๋ฉด ํด๋Ÿฌ์Šคํ„ฐ์˜ ๊ฐœ์ˆ˜๋ฅผ ์ถ”์ •ํ•  ์ˆ˜ ์žˆ๋‹ค.

Predict K

์šฐ์„  ํด๋Ÿฌ์Šคํ„ฐ ๊ฐœ์ˆ˜๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” K๋ฅผ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ณผ์ •์„ ๊ฑฐ์นœ๋‹ค:

1. ๊ธฐ๋ณธ K๊ฐ’์ธ K' ์„ค์ • (์ฃผ๋กœ ์›๋ž˜ intent์˜ ๋ฐฐ์ˆ˜๋กœ ๊ฒฐ์ •ํ•œ๋‹ค.)

2. pre-trainํ•œ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•ด์„œ intent feature์„ ์ถ”์ถœํ•œ๋‹ค.

3. ์ถ”์ถœ๋œ feature๋“ค์„ ์‚ฌ์šฉํ•ด์„œ K-means๋ฅผ ์ˆ˜ํ•ธํ•œ๋‹ค.

4. ํŠน์ • ์ž„๊ณ„๊ฐ’ ๋ฏธ๋งŒ์˜ ๊ฐ’์€ low confidence๋กœ ๊ฐ„์ฃผํ•˜์—ฌ ๋ฒ„๋ฆฐ๋‹ค.

์ด ๊ณผ์ •์„ ๊ฑฐ์นœ K ๊ฐ’ ์ถ”์ธก์€ ๋‹ค์Œ ์‹์œผ๋กœ ํ‘œํ˜„ ๊ฐ€๋Šฅํ•˜๋‹ค:

|S_i|๋Š” i๋ฒˆ์งธ ์ƒ์„ฑ๋œ cluster ๊ฐœ์ˆ˜, δ๋Š” indicator function์ธ๋ฐ, |S_i|๊ฐ€ t๋ณด๋‹ค ํฌ๊ฑฐ๋‚˜ ๊ฐ™์œผ๋ฉด 1์„, ์•„๋‹ˆ๋ฉด 0์„ ๋‚˜ํƒ€๋‚ธ๋‹ค.

 

3. Deep Aligned Clustering

known intent๋กœ๋ถ€ํ„ฐ knowledge๋ฅผ transfer ํ•œ ํ›„, ์ด์ œ unlabeled known, novel classes๋ฅผ ์ฐพ๊ธฐ ์œ„ํ•ด clustering ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•ด์•ผ ํ•œ๋‹ค. ์šฐ์„  ํด๋Ÿฌ์Šคํ„ฐ๋ง ํ›„ cluster assignment์™€ centroid๋ฅผ ์–ป๊ณ , self-supervised learning์„ ์œ„ํ•œ ์ „๋žต์„ ์‹คํ–‰ํ•œ๋‹ค.

Unsupervised Learning by Clustering

๊ฑฐ์˜ ๋Œ€๋ถ€๋ถ„์˜ data๋“ค์€ unlabeled ๋˜์–ด ์žˆ์œผ๋ฏ€๋กœ, unlabeled sample๋“ค์„ ์ด์šฉํ•ด์„œ ์ƒˆ๋กœ์šด class๋ฅผ ์ฐพ์•„๋ณด์ž.

1. training data์— ๋Œ€ํ•œ intent feature์„ pre-train ์‹œํ‚จ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•ด์„œ ์ถ”์ถœํ•œ๋‹ค.

2. K-means ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•ด์„œ optimal cluster centroid matrix C์™€ cluster assignment๋ฅผ ํ•™์Šต์‹œํ‚จ๋‹ค. ์‹์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค:

N์€ training sample์˜ ๊ฐœ์ˆ˜, ||~~||^2_2๋Š” ์œ ํด๋ฆฌ๋””์•ˆ ๊ฑฐ๋ฆฌ์˜ ์ œ๊ณฑ์„ ์˜๋ฏธํ•œ๋‹ค.

์ดํ›„ cluster assignment๋ฅผ feature learning์˜ pseudo-label๋กœ ๊ฐ„์ฃผํ•˜์—ฌ ์‚ฌ์šฉํ•œ๋‹ค.

 

Self-supervised Learning with Aligned Pseudo-labels

์ด ๋…ผ๋ฌธ์ด ์ฐธ๊ณ ํ•œ DeepCluster ๋…ผ๋ฌธ์—์„œ๋Š” K-means๋ฅผ ํ™œ์šฉํ•œ clustering๊ณผ ํŒŒ๋ผ๋ฏธํ„ฐ update๋ฅผ ๋ฒˆ๊ฐˆ์•„ ๊ฐ€๋ฉฐ ์ง„ํ–‰ํ–ˆ๋‹ค.

๊ทธ๋Ÿฌ๋‚˜ ์ด ๋ฐฉ์‹์—์„œ, ๊ฐ epoch๋งˆ๋‹ค K-menas๋ฅผ ์ˆ˜ํ–‰ํ•˜๋ฉด data index๊ฐ€ ๊ณ„์† ์žฌ๋ฐฐ์น˜๋œ๋‹ค๋Š” ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ–ˆ๋‹ค.

์ด๋Š” data์˜ label์ด epoch๋งˆ๋‹ค ๋ฐ”๋€” ์ˆ˜ ์žˆ์Œ์„ ๋œปํ–ˆ๊ณ , ๊ทธ๋Ÿผ ๋ชจ๋ธ์€ epoch๋งˆ๋‹ค ๋‹ค๋ฅธ label์„ ๊ฐ€์ง„ data๋กœ ํ›ˆ๋ จํ•˜๊ฒŒ ๋œ๋‹ค.

์ด๋Š” ์ผ๊ด€๋œ ํ•™์Šต์ด ์–ด๋ ต๋‹ค๋Š” ์ ์—์„œ ์น˜๋ช…์ ์ธ ๋‹จ์ ์ด์—ˆ๋‹ค.

 

๋”ฐ๋ผ์„œ ํ•ด๋‹น ๋…ผ๋ฌธ์—์„œ๋Š” assignment inconsistency ๋ฌธ์ œ๋ฅผ ์œ„ํ•ด alignment ์ „๋žต์„ ๋„์ž…ํ•œ๋‹ค.

์œ„์—์„œ ๋ฌธ์ œ๋Š” epoch๋งˆ๋‹ค ๋‹ค๋ฅธ label์„ ๊ฐ€์ง„๋‹ค, ์ฆ‰ ์ด์ „์˜ ํ•™์Šต ์ •๋ณด๊ฐ€ ๊ธฐ์–ต๋˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์ ์ด์—ˆ๋‹ค.

์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํ•ด๋‹น ๋…ผ๋ฌธ์—์„œ๋Š” cluster centroid๋ฅผ ์‚ฌ์šฉํ–ˆ๋‹ค. ๋‹จ๊ณ„์ ์ธ ๊ณผ์ •์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค:

 

1. ์ค€๋น„

์ด์ „๊ณผ ํ˜„์žฌ epoch์—์„œ์˜ ํด๋Ÿฌ์Šคํ„ฐ ์ค‘์‹ฌ ํ–‰๋ ฌ (centriod matrix)์„ ์ค€๋น„ํ•œ๋‹ค.

 

2. ์œ ์‚ฌ๋„ matrix

ํด๋Ÿฌ์Šคํ„ฐ ์ค‘์‹ฌ ํ–‰๋ ฌ๊ฐ„์˜ ์œ ์‚ฌ๋„๋ฅผ ๊ณ„์‚ฐํ•˜์—ฌ ์œ ์‚ฌ๋„ matrix๋ฅผ ๋งŒ๋“ ๋‹ค.

์˜ˆ๋ฅผ ๋“ค์–ด, matrix์˜ (i,j)๋Š” C^l์˜ i๋ฒˆ์งธ์™€ C^c์˜ j๋ฒˆ์งธ ์œ ์‚ฌ๋„๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค.

(C^c๋Š” current epoch์˜ centroid matrix, C^l์€ last(์ด์ „) epoch์˜ centroid matrix๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค.) 

 

3. ํ—๊ฐ€๋ฆฌ์•ˆ ์•Œ๊ณ ๋ฆฌ์ฆ˜

์œ ์‚ฌ๋„ matrix์— ํ—๊ฐ€๋ฆฌ์•ˆ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•ด์„œ ์ตœ์ ์˜ ๋งคํ•‘์„ ์ฐพ๋Š”๋‹ค.

์ด๋Š” ๋‘ ํด๋Ÿฌ์Šคํ„ฐ ์ค‘์‹ฌ ํ–‰๋ ฌ๊ฐ„์˜ ์œ ์‚ฌ๋„๋ฅผ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ๊ณผ์ •์ธ๋ฐ,

์œ„์—์„œ ์ฐพ์€ (i,j) ์œ ์‚ฌ๋„ ์ค‘ ์œ ์‚ฌ๋„ ๋†’์€ ๊ฒƒ์ด ๊ฐ™์€ index์— ์œ„์น˜ํ•˜๋„๋ก C^c๋ฅผ ๋ณ€ํ™”์‹œํ‚จ๋‹ค. ์‹์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค:

์—ฌ๊ธฐ์„œ G๋Š” ํ—๊ฐ€๋ฆฌ์•ˆ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜์—ฌ ์–ป์€ ์ตœ์ ์˜ mapping์ด๋‹ค.

 

4. ์ •๋ ฌ๋œ ์ค‘์‹ฌ ํ–‰๋ ฌ ์ƒ์„ฑ

์œ„ ๊ณผ์ •์„ ๊ฑฐ์ณ ์ •๋ ฌ๋œ ์ค‘์‹ฌ ํ–‰๋ ฌ C^c๋ฅผ ์ƒ์„ฑํ•œ๋‹ค.

 

5. ์ •๋ ฌ๋œ(aligned) psuedo label ์ƒ์„ฑ

y^c๋ฅผ ์ •๋ ฌ๋œ ์ค‘์‹ฌ ํ–‰๋ ฌ์— ๋งคํ•‘ํ•˜์—ฌ y^align์„ ์ƒ์„ฑํ•œ๋‹ค. ์‹์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

 

6. Self-supervised learning

์œ„์˜ aligned pseudo-label์„ ์‚ฌ์šฉํ•˜๊ณ  ๋‹ค์Œ softmax loss๋ฅผ ์‚ฌ์šฉํ•ด์„œ self-supervised learning์„ ์ง„ํ–‰ํ•œ๋‹ค:

φ(·)๋Š” pseudo-classifier์ด๋‹ค.

 

์œ„์™€ ๊ฐ™์€ clustering ๊ณผ์ •์„ ๊ฑฐ์นœ ํ›„์—๋Š” cluster validity index (CVI)๋ฅผ ์‚ฌ์šฉํ•ด์„œ ๊ฐ training epoch๋งˆ๋‹ค clustering ํ›„์— ์–ป์€ cluster์˜ quality๋ฅผ ํ‰๊ฐ€ํ•œ๋‹ค. ํŠนํžˆ, ํ‰๊ฐ€๋ฅผ ์œ„ํ•ด์„œ๋Š” unsupervised metric์ธ Silhouette Coefficient๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค. ๊ด€๋ จ ํ‰๊ฐ€ ๋ฉ”์†Œ๋“œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค:

 

a(I_i)๋Š” I_i์™€ ๋‹ค๋ฅธ i๋ฒˆ์งธ cluster์— ์žˆ๋Š” sample๋“ค์˜ ํ‰๊ท  ๊ฑฐ๋ฆฌ์ด๊ณ  (์ด๋Š” intra-class compactness๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค๊ณ  ํ•œ๋‹ค.)

b(I_i)๋Š” I_i์™€ i๋ฒˆ์งธ๊ฐ€ ์•„๋‹Œ cluster์— ์žˆ๋Š” ๋ชจ๋“  sample๋“ค ์ค‘ ๊ฐ€์žฅ ์งง์€ ๊ฑฐ๋ฆฌ๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. (์ด๋Š” inter-class seperation์„ ๋‚˜ํƒ€๋‚ธ๋‹ค.)

SC์˜ ๋ฒ”์œ„๋Š” -1๊ณผ 1 ์‚ฌ์ด์ด๊ณ , ๋†’์€ ์ ์ˆ˜์ผ์ˆ˜๋ก ์ข‹์€ clustering ๊ฒฐ๊ณผ๋ฅผ ๋œปํ•œ๋‹ค.


Experiments

Dataset

๋ฐ์ดํ„ฐ๋Š” CLINC(intent classification dataset)๊ณผ BANKING(์€ํ–‰, ๊ธˆ์œต๊ณผ ๊ด€๋ จ๋œ dataset)์ด๋‹ค.

CLINC์€ 10๊ฐœ์˜ ๋„๋ฉ”์ธ์„ ๊ฑฐ์ณ 150๊ฐœ์˜ ์˜๋„์™€ 22500๊ฐœ์˜ ๋ฐœํ™”๋กœ ๊ตฌ์„ฑ๋ผ ์žˆ๊ณ ,

BANKING์€ 77๊ฐœ์˜ ์˜๋„์™€ 13083๊ฐœ์˜ ๋ฐœํ™”๋กœ ๊ตฌ์„ฑ๋ผ ์žˆ๋‹ค.

Baselines

ํ‰๊ฐ€ ๋ฐฉ์‹์€ unsupervised์™€ semi-supervised์˜ 2๊ฐ€์ง€๋กœ ๋‚˜๋‰œ๋‹ค.

Evaluation Metrics

ํ‰๊ฐ€ metric์œผ๋กœ๋Š” NMI, ARI, ACC๋ฅผ ์‚ฌ์šฉํ•˜๋Š”๋ฐ, ACC๋กœ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š”

ํ—๊ฐ€๋ฆฌ์•ˆ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•ด์„œ ์˜ˆ์ธก๋œ ํด๋ž˜์Šค์™€ ground-truth ํด๋ž˜์Šค์˜ mapping์„ ์–ป๋Š”๋‹ค.

Evaluation Settings

๋ฐ์ดํ„ฐ์…‹์€ 10%์˜ training data ์ค‘ 75% known intent๋กœ, ๋‚˜๋จธ์ง€ 25%๋ฅผ unknown intent๋กœ ๋žœ๋คํ•˜๊ฒŒ ์„ ํƒํ•œ๋‹ค.

์ดํ›„, ํ•ด๋‹น ๋ฐ์ดํ„ฐ์…‹๋“ค์„ training, validation, test set๋กœ ๊ตฌ๋ถ„ํ•œ๋‹ค.

์ด๋•Œ, intent category ์ˆ˜ (K)๋ฅผ ์‹ค์ œ ์ •๋‹ต๊ฐ’ (ground-truth)๋กœ ์—ฌ๊ธด๋‹ค.

ํ‰๊ฐ€ ๊ณผ์ •์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค:

1. ์ ์€ ์–‘์˜ known intent๋ฅผ ๊ฐ€์ง„ labeled data๋ฅผ ์‚ฌ์šฉํ•ด์„œ ๋ชจ๋ธ์„ pre-training์„ ํ•˜๊ณ , validation set๋กœ ํŠœ๋‹ํ•œ๋‹ค.

2. ๋ชจ๋“  training data๋ฅผ self-supervised learning์„ ์œ„ํ•ด ์‚ฌ์šฉํ•˜๊ณ  cluster์„ SC๋กœ ํ‰๊ฐ€ํ•œ๋‹ค.

3. test set์— ๋Œ€ํ•œ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๊ณ  ์ตœ์ข… ํ‰๊ท  ๊ฒฐ๊ณผ๋ฅผ ์ž‘์„ฑํ•œ๋‹ค.

๊ฒฐ๊ณผ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค:


Conclusion

์ด๋ ‡๊ฒŒ, ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ์ƒˆ๋กœ์šด ์˜๋„๋ฅผ ๋ฐœ๊ฒฌํ•˜๋Š” ํšจ๊ณผ์ ์ธ ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ–ˆ๋‹ค.

์ด ๋ฐฉ๋ฒ•์€ ์ œํ•œ๋œ known intent์˜ ์‚ฌ์ „ ์ง€์‹์„ ์„ฑ๊ณต์ ์œผ๋กœ transferํ•˜๋ฉฐ, low-confidence cluster๋ฅผ ์ œ๊ฑฐํ•จ์œผ๋กœ์จ ์˜๋„ ์ˆ˜๋ฅผ ์ถ”์ •ํ•œ๋‹ค.

๋˜ํ•œ, clustering ํ”„๋กœ์„ธ์Šค๋ฅผ ์•ˆ์ •์ ์ด๊ณ  ๊ตฌ์ฒด์ ์œผ๋กœ ์•ˆ๋‚ดํ•˜๋Š” ๋” ์•ˆ์ •์ ์ธ supervised signal๋ฅผ ์ œ๊ณตํ•œ๋‹ค.

DeepAligned๋‚œ ๋น„๊ต ๋Œ€์ƒ ๋ฐฉ๋ฒ•๋ณด๋‹ค ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์ด๋ฉฐ, ์ œํ•œ๋œ ์‚ฌ์ „ ์ง€์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋” ์ •ํ™•ํ•œ ์ถ”์ •๋œ cluster ์ˆ˜๋ฅผ ์–ป๋Š”๋‹ค