๐Ÿ“š ๋…ผ๋ฌธ

New Intent Discovery with Pre-training and Contrastive Learning

2023. 9. 30. 17:52
๋ชฉ์ฐจ
  1. Abstract
  2. Problem
  3. Method
  4. Introduction
  5. Recent Works
  6. Solutions
  7. Related Works
  8. NID
  9. Pre-training
  10. Method
  11. Problem Statement
  12. Overview
  13. 1. MTP
  14. 2. CLNN
  15. Experiment
  16. Details
  17. Result Analysis
  18. Ablation Study
  19. Conclusion & Limitations
  20. Conclusion
  21. Limitations

์—ฐ๊ตฌ ๋ถ„์•ผ๋ฅผ ์ •ํ•˜๋ ค๊ณ  ๋…ผ๋ฌธ์„ ๋ณด๊ณ  ์žˆ๋Š”๋ฐ, NID (New Intent Classification) ๋…ผ๋ฌธ๋“ค์„ ๊ณ„์† ์ฝ๊ฒŒ ๋œ๋‹ค. 

๋ณธ ๋…ผ๋ฌธ์€ 2022 ACL ํ•™ํšŒ์— ์ˆ˜๋ก๋œ ๋…ผ๋ฌธ์ด๋ฉฐ, ์ฃผ ์ €์ž๋Š” Yuwei Zhang ์ด๋‹ค.


Abstract

Problem

๊ธฐ์กด์˜ ๋ฐฉ๋ฒ•๋“ค์€ ๋‹ค๋Ÿ‰์˜ labeled data์— ์˜์กดํ•˜๊ฑฐ๋‚˜ pseudo-labeling์„ ํ†ตํ•œ clustering ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋„ˆ๋ฌด label์— ์˜์กด์ ์ด๋‹ค. 

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” NID ๋ถ„์•ผ์— ์žˆ์–ด ๋‹ค์Œ ์งˆ๋ฌธ๋“ค์— ๋Œ€ํ•œ ๋‹ต์„ ์–ป๊ณ ์ž ํ–ˆ๋‹ค:

  1. ์–ด๋–ป๊ฒŒ ์˜๋ฏธ์  ๋ฐœํ™” ํ‘œํ˜„์„ ํ•™์Šต์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š”์ง€
  2. ๋ฐœํ™”๋“ค์„ ์–ด๋–ป๊ฒŒ ๋” ์ž˜ clustering ํ•  ์ง€

Method

  1. Multi-task pre-training(MTP) ์ „๋žต ์‚ฌ์šฉ
    • representation learning์„ ์œ„ํ•ด ๋งŽ์€ ์–‘์˜ unlabeled data์™€ ์™ธ๋ถ€ labeled data๋ฅผ ํ•จ๊ป˜ ํ™œ์šฉ
  2. New Contrastive Loss (CL) ์‚ฌ์šฉ
    • unlabeled data์—์„œ clustering์„ ์œ„ํ•ด self-supervisory signal์„ ๋งŒ๋“ฆ

ํ•ด๋‹น ๋ฐฉ๋ฒ•์€ 3๊ฐ€์ง€ dataset์œผ๋กœ ํ‰๊ฐ€๋˜๋ฉฐ, unsupervised์™€ semi-supervised ๋ฐฉ์‹ ๋ชจ๋‘์—์„œ SOTA๋ฅผ ๋‹ฌ์„ฑํ–ˆ๋‹ค.


Introduction

๋‹จ์–ด์˜ ์˜๋ฏธ์  ํ‘œํ˜„์„ ํ†ตํ•ด clustering์„ ์œ„ํ•œ ์ข‹์€ ๊ทผ๊ฑฐ๋ฅผ ์ „๋‹ฌํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•จ โ†’ ๊ทธ๋ƒฅ PLM ์ด์šฉํ•ด์„œ ๋ฐœํ™” ํ‘œํ˜„์„ ์ƒ์„ฑํ•˜๋Š”๊ฑด ์†”๋ฃจ์…˜์ด ๋  ์ˆ˜ ์—†์Œ

Recent Works

  • labeled data๋ฅผ ์‚ฌ์šฉํ•œ ์ด์ „์˜ ์—ฐ๊ตฌ๋“ค์€ ๋งŽ์€ ์–‘์˜ known intents์™€ ์ถฉ๋ถ„ํ•œ ์–‘์˜ labeled data๋ฅผ ํ•„์š”๋กœ ํ–ˆ์Œ. โ†’ ๊ทธ๋Ÿฌ๋‚˜ ์ด ์ƒํ™ฉ์€ ์‹ค์ œ ์ƒํ™ฉ๊ณผ๋Š” ๊ฑฐ๋ฆฌ๊ฐ€ ๋ฉ€์Œ
  • pseudo labeling ์ ‘๊ทผ์„ ํ†ตํ•ด supervision signal์„ ๋งŒ๋“ค์–ด representation learning๊ณผ clustering ํ•˜๋ ค๋Š” ๋…ธ๋ ฅ๋“ค๋„ ์žˆ์—ˆ์ง€๋งŒ, data๋“ค์ด noisyํ•˜๊ณ  ์—๋Ÿฌ๊ฐ€ ๋งŽ์•˜์Œ

Solutions

  1. Multi-task pre-training (MTP) : ์™ธ๋ถ€ (external) data์™€ ๋‚ด๋ถ€ (internal) data๋ฅผ ํ•จ๊ป˜ ์‚ฌ์šฉํ•˜์—ฌ representation learning ํ•˜๋Š” ๋ฐฉ์‹
    1. ๊ณต๊ฐœ๋œ high-quality intent detection dataset๊ณผ ํ˜„์žฌ ๋„๋ฉ”์ธ์˜ labeled, unlabeled dataset์„ ๋ชจ๋‘ ํ™œ์šฉํ•ด์„œ
    2. PLM ํŒŒ์ธํŠœ๋‹์„ ์ง„ํ–‰ํ•œ ํ›„,
    3. NID๋ฅผ ์œ„ํ•œ task-specific ๋ฐœํ™” ํ‘œํ˜„์„ ํ•™์Šตํ•จ
    ๋ณธ ์ „๋žต์€ ์ผ๋ฐ˜์ ์ธ intent detection task์—์„œ knowledge transfer์ด ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๊ณ , ํŠน์ • ๋„๋ฉ”์ธ์— ์ ์šฉํ•˜๋Š” ๊ฒƒ๋„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•จ
  2. Contrastive learning with nearest neighbors (CL-NN) : ์ด์›ƒ ๊ด€๊ณ„๋ฅผ ํ™œ์šฉํ•ด์„œ unsupervised์™€ semi-supervised ์‹œ๋‚˜๋ฆฌ์˜ค ๋‘˜๋‹ค์— contrastive loss๋ฅผ ์ ์šฉํ•˜๋Š” ๋ฐฉ์‹
    • ์˜๋ฏธ์  ๊ณต๊ฐ„์—์„œ์˜ ์ด์›ƒ์€ ๋น„์Šทํ•œ intent๋ฅผ ๋ณด์œ ํ•  ๊ฒƒ์ด๊ณ , ํ•ด๋‹น ์ƒ˜ํ”Œ๋“ค์„ ๋ชจ์œผ๋ฉด cluster๋ฅผ ๋”์šฑ ์ปดํŒฉํŠธํ•˜๊ฒŒ ๋งŒ๋“ค ์ˆ˜ ์žˆ์Œ

Related Works

NID

  1. unsupervised methods
  2. semi-supervised methods: using labeled data to support the discovery of unknown intents
  3. supervised methods: known intents์— ๋Œ€ํ•ด pre-train ํ•œ ํ›„, k-means clustering ์ ์šฉํ•ด์„œ unlabeled data์— pseudo label ํ• ๋‹น

Pre-training

  • pre-training with relevant tasks can be effective for intent recognition ๋ผ๋Š” ์‚ฌ์ „ ์—ฐ๊ตฌ

โ†’ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ณต๊ฐœ์ ์œผ๋กœ ์ด์šฉ ๊ฐ€๋Šฅํ•œ intent dataset + unlabeled data in current domain์„ pre-training์— ์‚ฌ์šฉ โ†’ few-shot intent detection


Method

Problem Statement

  • expected intent C_k
  • known, labeled dataset / unlabeled dataset

๋ชฉ์ : unlabeled dataset์˜ unknown intents ์ฐพ์•„๋‚ด๋Š” ๊ฒƒ

๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” unsupervised์™€ semi-supervised 2๊ฐ€์ง€ ๋ชจ๋‘์˜ ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•จ.

Overview

  1. MTP ๋‹จ๊ณ„
    • ์™ธ๋ถ€ (external) data์— ๋Œ€ํ•ด์„œ๋Š” cross-entropy loss
    • ๋‚ด๋ถ€ unlabeled data์— ๋Œ€ํ•ด์„œ๋Š” self-supervised loss
  2. CLNN ๋‹จ๊ณ„
    • top-K nearest neighbors๋ฅผ embedding space์— ํ‘œํ˜„
    • ์ดํ›„, contrastive learning with nearest neighbors ์ ์šฉ
  3. clustering algorithm โ†’ obtain clustering results

1. MTP

key method: pre-train์„ ์œ„ํ•ด ํ˜„์žฌ domain์˜ labeled data๊ฐ€ ์•„๋‹Œ, ๊ณต๊ฐœ๋œ public data ์‚ฌ์šฉ

  • pre-trained BERT encoder ์‚ฌ์šฉ
  • joint pre-training loss

  1. ์™ธ๋ถ€ labeled data์— ๋Œ€ํ•œ cross-entropy loss: ์™ธ๋ถ€ labeled data๋Š” ๋‹ค์–‘ํ•œ ๋„๋ฉ”์ธ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉ
    • ์ฃผ๋กœ classification task์—์„œ๋Š” intent recognition์˜ ์ผ๋ฐ˜์ ์ธ ์ง€์‹ ์–ป์œผ๋ ค๋Š” ๊ฒƒ์ด ๋ชฉ์ ์ž„
  2. ํ˜„์žฌ ๋„๋ฉ”์ธ์˜ ๋ชจ๋“  ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ MLM loss
    • self-supervised task์—์„œ๋Š” ๋ฐœํ™”์˜ ํ˜„์žฌ ๋„๋ฉ”์ธ์—์„œ์˜ ์˜๋ฏธ๋ฅผ ์–ป๊ณ ์ž ํ•จ

-> ์ดํ›„์— clustering task๋ฅผ ์œ„ํ•œ ์˜๋ฏธ์  ๋ฐœํ™” ํ‘œํ˜„์„ ์–ป์Œ

Semi-supervised NID

์ดํ›„ semi-supervised ๋ฐฉ์‹๊ณผ์˜ ๋น„๊ต๋ฅผ ์œ„ํ•ด์„œ๋Š” ์œ„ ์‹์—์„œ D-labeled-external์„ (ํ˜„์žฌ ๋„๋ฉ”์ธ์˜ ๋ฐ์ดํ„ฐ์ธ) D-labeled-known์œผ๋กœ ๋ฐ”๊พธ๋ฉด์„œ ์–ป์„ ์ˆ˜ ์žˆ์Œ

2. CLNN

key method: ์˜๋ฏธ์  ๊ณต๊ฐ„์—์„œ ์ด์›ƒ instance๋“ค์„ ๊ฐ€๊น๊ฒŒ, ๋ฉ€๋ฆฌ ๋–จ์–ด์ง„ instance๋“ค์€ ๋ฉ€๋ฆฌ ํ•˜๋ฉด์„œ compactํ•œ clustering์ด ๊ฐ€๋Šฅํ•˜๋„๋ก ํ•จ

  1. PTM์œผ๋กœ ๋ฐœํ™” encode
  2. ๊ฐ ๋ฐœํ™” x_i์— ๋Œ€ํ•ด top-KNN์„ ์ฐพ์•„ ์ด์›ƒ N_i๋ฅผ ํ˜•์„ฑํ•จ. (์ด๋•Œ distance metric์œผ๋กœ๋Š” inner product๋ฅผ ์‚ฌ์šฉ) - N_i์— ์†ํ•œ ๋ฐœํ™”๋“ค์€ x_i์™€ ๋น„์Šทํ•œ intent๋ฅผ ๊ณต์œ ํ•ด์•ผ ํ•จ
    • ์ด๋•Œ neighborhood๋Š” ์ ๋‹นํ•œ epoch๋งˆ๋‹ค update๋จ!
  3. ๋ฐœํ™”์˜ minibatch ์ƒ˜ํ”Œ๋งํ•จ

4. Beta์— ์†ํ•˜๋Š” x_i์— ๋Œ€ํ•ด N_i์—์„œ ํ•˜๋‚˜์˜ ์›์†Œ x_iโ€™ ์ƒ์„ฑ

5. data augmentation์„ ํ†ตํ•ด x_i๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ \hat_{x_i}๋ฅผ, x_iโ€™์„ ๊ธฐ๋ฐ˜์œผ๋กœ \hat_{x_i}โ€™ ์ƒ์„ฑ โ†’ ์ด๋“ค์„ x_i์˜ positive pair๋“ค๋กœ ๊ฐ„์ฃผํ•จ

6. augmented batch ์–ป์Œ

7. contrastive loss ๊ณ„์‚ฐ์„ ์œ„ํ•ด 2M X 2M ํฌ๊ธฐ์˜ binary matrix ๋งŒ๋“ค์–ด
-> 1: positive, 0: negative ๋‚˜ํƒ€๋‚ด๊ฒŒ ํ•จ

  • C_i๋Š” \hat_{x_i}์™€ positive ๊ด€๊ณ„์— ์žˆ๋Š” instances์˜ ์ง‘ํ•ฉ, |C_i|๋Š” ์ง‘ํ•ฉ์˜ ๊ฐœ์ˆ˜
  • \hat_{h_i}๋Š” \hat_{x_i}์˜ embedding
  • sim์€ ์œ ์‚ฌ๋„ ๊ณ„์‚ฐ function

Data Augmentation - RTR (Random Token Replacement)

augementation ๊ธฐ๋ฒ•์œผ๋กœ๋Š” Random Token Replacement๋ฅผ ์‚ฌ์šฉํ•จ.

unlabeled data๋กœ๋ถ€ํ„ฐ keyword ์‹๋ณ„ํ•˜๋Š” ๊ฒƒ์ด ์–ด๋ ค์šฐ๋ฏ€๋กœ ๋žœ๋ค ํ† ํฐ์œผ๋กœ ์ ์€ ์–‘์˜ ํ† ํฐ์„ ๋Œ€์ฒดํ•˜๋Š” ๊ฒƒ์€ intent ์˜๋ฏธ๋ฅผ ๋ฐ”๊พธ์ง€ ์•Š์„ ๊ฒƒ์ž„

Advantages of CLNN

  1. ๋น„์Šทํ•œ instance๋“ค์€ ๊ฐ€๊น๊ฒŒ, ๋‹ค๋ฅธ instance๋“ค์€ ๋ฉ€๋ฆฌ ์œ„์น˜์‹œํ‚ด์œผ๋กœ์จ ์ปดํŒฉํŠธํ•œ cluster ์ƒ์„ฑ ๊ฐ€๋Šฅ
  2. noisyํ•œ pseudo label ์“ฐ๋Š”๊ฑฐ๋ณด๋‹ค embedding space์—์„œ์˜ ์‹ค์ œ ๊ฑฐ๋ฆฌ๋‚˜ ์œ„์น˜๋ฅผ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ์Œ
  3. logit์„ ํด๋Ÿฌ์Šคํ„ฐ๋ง ํ•˜๋Š” ๋Œ€์‹  ํŠน์„ฑ ๊ณต๊ฐ„์—์„œ ์ง์ ‘ ์ตœ์ ํ™” โ†’ ๋” ํšจ๊ณผ์ ์ž„
  4. ์ธ์ ‘ ํ–‰๋ ฌ (adjacency matrix)์„ ์‚ฌ์šฉํ•ด์„œ known intents ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ํ†ตํ•ฉ

Experiment

Details

Dataset

  • CLINC150 - external public intent dataset: 10๊ฐœ์˜ domain์œผ๋กœ ๊ตฌ์„ฑ: ๊ทธ์ค‘ 8๊ฐœ๋งŒ ์‚ฌ์šฉํ•˜๊ณ  ๋‚˜๋จธ์ง€ ์‚ญ์ œ
  • dataset splittraining validation test
    BANKING 9003 1000 3080
    StackOverflow 18000 1000 1000
    M-CID 1220 176 349

Setup

Unsupervised & Semi-Supervised ๋‘˜๋‹ค ํ‰๊ฐ€ - unsupervised๋กœ ํ‰๊ฐ€ ์‹œ์—๋Š” labeled data๊ฐ€ ์—†๋Š” ์ฑ„๋กœ ๊ฐ„์ฃผํ•˜๊ณ  ์‹คํ–‰

  • KCR: proportion of known intents ratio
    • KCR = 0: unsupervised NID
    • KCR > 0: semi-supervised NID
    • KCR = {25%, 50%, 75%}
  • LAR: proportion of labeled examples for each known intent
    • labeled data๋Š” training data์—์„œ ๋žœ๋คํ•˜๊ฒŒ ์ƒ˜ํ”Œ๋ง
    • LAR = {10%, 50%}

Metric

NMI, ARI, ACC

 

Baselines

Implementation

  • bert-base ๋ชจ๋ธ ์‚ฌ์šฉ: CLS ํ† ํฐ์„ BERT representation์œผ๋กœ ์‚ฌ์šฉ
  • MTP
    • external dataset์— ๋Œ€ํ•ด ์ˆ˜๋ ดํ•  ๋•Œ๊นŒ์ง€ trainํ•จ
    • labeled, known data train ํ•  ๋•Œ๋Š” development set ์‚ฌ์šฉํ•ด์„œ early stopping
  • CL
    • 768-d BERT embedding์„ 128-d ๋ฒกํ„ฐ๋กœ ์‚ฌ์˜: 2๊ฐœ layer๋กœ ์ด๋ฃจ์–ด์ง„ MLP
    • temperature: 0.07
  • NN
    • faiss (ํŒŒ์‹œ์Šค) ๋ฅผ nearest neighbor ์ฐพ๋Š” inner product method๋กœ ์‚ฌ์šฉ
    • neighbor size K ์„ค์ •: K์— ๋”ฐ๋ฅธ ๊ฐ ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•œ ์Šค์ฝ”์–ด๋ฅผ ์‹คํ—˜ํ–ˆ์„ ๋•Œ ๊ฐ€์žฅ ์ข‹์€ ์Šค์ฝ”์–ด๋ฅผ ๋ณด์ธ K๋“ค๋กœ ์‹œ์ž‘
      • BANKING, M-CID๋Š” 50
      • StackOverflow๋Š” 500
      • neighborsms 5epoch๋งˆ๋‹ค update

  • data augmentation
    • RTR ์‚ฌ์šฉ - probability 0.25
  • model optimization
    • AdamW

 

Result Analysis

  1. Unsupervised์—์„œ strongest baseline์ด์—ˆ๋˜ SAE-DCN๋ณด๋‹ค ์Šค์ฝ”์–ด ๋†’์Œ โ†’ external public ๋ฐ์ดํ„ฐ์™€ unlabeled internal utterance ๋‘˜๋‹ค ์‚ฌ์šฉํ•˜๋Š”๊ฑฐ ์ข‹๋‹ค
  2. Semi-supervised์—์„œ KCL์ด 75%์ผ ๋•Œ์™€ 25%์ผ ๋•Œ๋ฅผ ๋น„๊ตํ•˜๋ฉด ์„ฑ๋Šฅ์ด 8.55%๋ฐ–์— ์•ˆ๋–จ์–ด์ง โ†’ MTP๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์ด labeled-class์— ๋œ ์˜์กด์ ์ธ ๊ฒƒ์„ ๋ณด์—ฌ์คŒ: label-effective ํ•จ
  3. MTP-CLNN์ด ์„ฑ๋Šฅ ์ œ์ผ ์ข‹์Œ
  4. Visualization: t-SNE๋กœ visualization ํ•œ๊ฑฐ ๋ณด๋ฉด MTP-CLNN์ด ์ œ์ผ ์ปดํŒฉํŠธํ•˜๊ฒŒ clustering ๋จ

Ablation Study

  1. Ablation Study on MTP

  • MTP๋ฅผ ๋‘ ๋ถ€๋ถ„์œผ๋กœ ๋ถ„ํ•ดํ•  ์ˆ˜ ์žˆ์Œ
    1. PUB (supervised pre-training on external public data)
    2. MLM (self-supervised pre-training ong internal unlabeled data)
    ๋‘๊ฐœ๋ฅผ ๋–จ์–ด๋œจ๋ฆด ์ˆ˜ ์—†์Œ

2. Ablation Study on neighborhood size K

  • K์— ๋”ฐ๋ฅธ ๋ถ„ํฌ๊ฐ€ ๋‹ค๋ฅด๊ธด ํ•˜์ง€๋งŒ, MTP-CLNN > MTP ์ž„
  • Empirical (๊ฒฝํ—˜์ ) estimation method: ๊ฐ training set์— ํฌํ•จ๋˜๋Š” ๊ฐ class์˜ ํ‰๊ท ์˜ ๋ฐ˜์„ ์ดˆ๊ธฐ K๋กœ ์„ค์ •

3. Exploration on Data Augmentation

RTR, SWR๊ฐ€ ๋ฒˆ๊ฐˆ์•„๊ฐ€๋ฉด์„œ ์„ฑ๋Šฅ์ด ๋†’์€ ๊ฒƒ์„ ๋ณด์ž„ - ๊ฐ„๋‹จํ•˜๊ฒŒ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ทธ๋ƒฅ RTR๋งŒ ์”€


Conclusion & Limitations

Conclusion

MTP + CLNN ๋ฐฉ๋ฒ• ์ผ์Œ

Limitations

  1. balanced data์—๋งŒ ์‹คํ—˜ํ–ˆ์Œ - ์‹ค์ œ์™€ ๋น„์Šทํ•œ imbalanced data์— ๋Œ€ํ•œ ์‹คํ—˜๋„ ํ•„์š”ํ•จ
  2. cluster์— ๋Œ€ํ•œ ํ•ด์„ ๋Šฅ๋ ฅ์ด ๋ถ€์กฑํ•จ - ๊ฐ unlabeled utterance์— cluster label์„ ํ• ๋‹นํ•  ์ˆ˜๋Š” ์žˆ์ง€๋งŒ ๊ฐ cluster์— ๋Œ€ํ•œ ์œ ํšจํ•œ intent๋ฅผ ํ• ๋‹นํ•˜๊ธฐ ์–ด๋ ค์›€
  •  
์ €์ž‘์žํ‘œ์‹œ (์ƒˆ์ฐฝ์—ด๋ฆผ)

'๐Ÿ“š ๋…ผ๋ฌธ' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€

Beyond Candidates: Adaptive Dialogue Agent Utilizing Persona and Knowledge  (0) 2024.01.06
IDAS: Intent Discovery with Abstractive Summarization  (2) 2023.10.10
Two Birds One Stone: Dynamic Ensemble for OOD Intent Classification  (0) 2023.08.28
Discovering New Intents with Deep Aligned Clustering  (0) 2023.08.16
A Probabilistic Framework for Discovering New Intents  (0) 2023.07.27
  1. Abstract
  2. Problem
  3. Method
  4. Introduction
  5. Recent Works
  6. Solutions
  7. Related Works
  8. NID
  9. Pre-training
  10. Method
  11. Problem Statement
  12. Overview
  13. 1. MTP
  14. 2. CLNN
  15. Experiment
  16. Details
  17. Result Analysis
  18. Ablation Study
  19. Conclusion & Limitations
  20. Conclusion
  21. Limitations
'๐Ÿ“š ๋…ผ๋ฌธ' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€
  • Beyond Candidates: Adaptive Dialogue Agent Utilizing Persona and Knowledge
  • IDAS: Intent Discovery with Abstractive Summarization
  • Two Birds One Stone: Dynamic Ensemble for OOD Intent Classification
  • Discovering New Intents with Deep Aligned Clustering
์žฅ์˜์ค€
์žฅ์˜์ค€
groomielife
์žฅ์˜์ค€
youngjangjoon
์žฅ์˜์ค€
์ „์ฒด
์˜ค๋Š˜
์–ด์ œ
  • ๋ถ„๋ฅ˜ ์ „์ฒด๋ณด๊ธฐ (35)
    • ๐Ÿ“š ๋…ผ๋ฌธ (10)
    • ๐Ÿ’ป ํ”„๋กœ์ ํŠธ (14)
      • ๐ŸŽ“ RESUMAI (6)
      • ๐Ÿงธ TOY-PROJECTS (8)
    • ๐Ÿ“š ์Šคํ„ฐ๋”” (11)
      • CS224N (6)
      • NLP (5)

์ธ๊ธฐ ๊ธ€

ํƒœ๊ทธ

  • contrastive learning
  • ์ž์†Œ์„œ์ƒ์„ฑํ”„๋กœ์ ํŠธ
  • MTP-CL
  • allauth
  • text embedding
  • ์ƒ์„ฑAI
  • story discovery
  • Representation Training
  • DEEPALIGNED
  • NLP
  • text clustering
  • project
  • Conversational Agent
  • vectordb
  • DEEPLOOK
  • rag
  • gpt-1
  • CS224N
  • pinecone
  • RESUMAI
  • ์ž๊ธฐ์†Œ๊ฐœ์„œ์ƒ์„ฑ
  • GenAI
  • ArcFace
  • ๋…ผ๋ฌธ
  • Haar-cascade
  • ๋น„๋™๊ธฐ ์ €์žฅ
  • dj-rest-auth
  • NeuralNet
  • cv
  • Neural Net
hELLO ยท Designed By ์ •์ƒ์šฐ.
์žฅ์˜์ค€
New Intent Discovery with Pre-training and Contrastive Learning
์ƒ๋‹จ์œผ๋กœ

ํ‹ฐ์Šคํ† ๋ฆฌํˆด๋ฐ”

๋‹จ์ถ•ํ‚ค

๋‚ด ๋ธ”๋กœ๊ทธ

๋‚ด ๋ธ”๋กœ๊ทธ - ๊ด€๋ฆฌ์ž ํ™ˆ ์ „ํ™˜
Q
Q
์ƒˆ ๊ธ€ ์“ฐ๊ธฐ
W
W

๋ธ”๋กœ๊ทธ ๊ฒŒ์‹œ๊ธ€

๊ธ€ ์ˆ˜์ • (๊ถŒํ•œ ์žˆ๋Š” ๊ฒฝ์šฐ)
E
E
๋Œ“๊ธ€ ์˜์—ญ์œผ๋กœ ์ด๋™
C
C

๋ชจ๋“  ์˜์—ญ

์ด ํŽ˜์ด์ง€์˜ URL ๋ณต์‚ฌ
S
S
๋งจ ์œ„๋กœ ์ด๋™
T
T
ํ‹ฐ์Šคํ† ๋ฆฌ ํ™ˆ ์ด๋™
H
H
๋‹จ์ถ•ํ‚ค ์•ˆ๋‚ด
Shift + /
โ‡ง + /

* ๋‹จ์ถ•ํ‚ค๋Š” ํ•œ๊ธ€/์˜๋ฌธ ๋Œ€์†Œ๋ฌธ์ž๋กœ ์ด์šฉ ๊ฐ€๋Šฅํ•˜๋ฉฐ, ํ‹ฐ์Šคํ† ๋ฆฌ ๊ธฐ๋ณธ ๋„๋ฉ”์ธ์—์„œ๋งŒ ๋™์ž‘ํ•ฉ๋‹ˆ๋‹ค.