이전까지는 프론트 쪽 작업만 맡아서 하고, 백엔드는 node js로 한번 맛본 상태였는데, 갑작스레 웹과 백을 연결해야 하는 태스크가 주어졌다. 시간이 없고, 모델이 규모가 있는 모델은 아니어서 flask를 사용하기로 결정했다. 더 자세한 코드를 보고 싶으면 깃허브를 참고하길 바란다. (좀 난잡할 수 있음 주의) 백엔드 모델과 연결 시 거친 단계는 다음과 같다: pickle 파일을 만들어 모든 연예인의 얼굴 임베딩을 저장한다. client 측에서 post 요청을 보냈을 때 이미지 데이터를 받아 임베딩을 추출한다. 추출한 임베딩과 가장 유사한 임베딩을 pickle 파일로부터 로딩한다. 추출된 얼굴 임베딩과 사전 학습된 임베딩 간의 유사도를 계산한다. 가장 유사한 유명인의 이니셜과 유사도를 JSON 형식으로..
사진 전처리 이후, 모델을 선정하고 학습시키는 과정을 거쳤다. 모델의 후보는 ResNet, EfficientNet, Arcface가 있었는데, 가장 얼굴 유사도 부분에서 큰 성능을 보이는 Arcface 모델을 선정했다. 더 자세한 과정은 코랩을 통해 확인할 수 있다. 1. CSV 파일 생성 우선 전처리된 사진들의 이름(이름_순번 형태)과 해당 인물들이 label 된 csv 파일을 생성했다. 2. Train, Test dataset 분리 항목별로 70%는 train, 30%는 test의 데이터셋으로 분리했다. # 이니셜을 하나의 배열로 모으기 class_name_list = [] tmp=df.copy() for initial in tmp['class']: if initial not in class_name..