๐Ÿ“š ๋…ผ๋ฌธ

CLICK: Constrastive Learning for Injecting Contextual Knowledge to Conversational Recommender System

2023. 6. 26. 04:48
๋ชฉ์ฐจ
  1. Abstract
  2. Introduction
  3. Related Work
  4. 1. CRS (Conversational Recommender Systems)
  5. 2. Contrastive Learning
  6. Pre-training for Contextual Knowledge Injection
  7. 1. Contextual Knowledge Injection
  8. 2. Learning to Explain Recommendation
  9. Fine-tuning for Conversational Recommendation Task
  10. 1. Contextual Knowledge-enhanced Recommendation
  11. 2. Context-enhanced Response Generation
  12. Experiment
  13. Conclusions and Future Work

์š”์ฆ˜ ๋Œ€ํ™”ํ˜• ์ฑ—๋ด‡์— ๊ด€์‹ฌ์ด ๋งŽ๋‹ค.

๊ทธ๋Ÿฐ๋ฐ chatGPT์™€ ๋Œ€ํ™”๋ฅผ ํ•ด ๋ณด์•˜์„ ๋•Œ, ๋‚ด๊ฐ€ ์ข‹์•„ํ•˜๋Š” ๊ฒƒ์ด ๋ญ”์ง€ ๋”ฑ ์•Œ๋ ค์ฃผ์ง€ ์•Š์œผ๋ฉด ์ œ๋Œ€๋กœ ํŒŒ์•… ๋ชปํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ์—„์ฒญ ๋งŽ๋‹ค.

์ด์— ๋Œ€ํ™”๋งŒ์œผ๋กœ ๋‚˜์˜ ์„ ํ˜ธ๋„๋ฅผ ํŒŒ์•…ํ•˜๋Š” ์ฑ—๋ด‡์€ ์—†์„๊นŒ? ๊ด€๋ จํ•ด์„œ ์‹ ๋ฐ•ํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์—†์„๊นŒ? ์— ๋Œ€ํ•ด ์ƒ๊ฐํ•ด ๋ณด์•˜๊ณ , ์œ„ ๋…ผ๋ฌธ์„ ์ ‘ํ•˜๊ฒŒ ๋๋‹ค. ์ž์„ธํžˆ, ์—ด์‹ฌํžˆ ์ฝ์—ˆ์œผ๋‹ˆ, ์ฝ์€ ํ”์ ์„ ์ฒจ๋ถ€ํ•ด์•ผ๊ฒ ๋‹ค. (ํ•„๊ธฐ ๋งŽ์Œ ์ฃผ์˜)

2023.eacl-main.137.pdf
11.62MB


Abstract

ํ˜„์กดํ•˜๋Š” ๋Œ€ํ™”ํ˜• ์ถ”์ฒœ ์‹œ์Šคํ…œ (Conversational Recommender Systems. ์ค„์—ฌ์„œ CRS๋ผ๊ณ  ๋ถ€๋ฅด๋”๋ผ.)์€ ๋Œ€ํ™”๋งŒ์œผ๋กœ ์ „์ฒด์ ์ธ ์œ ์ € ์„ ํ˜ธ๋„๋ฅผ ์•Œ์ง€ ๋ชปํ•œ๋‹ค. ์„ ํ˜ธํ•˜๋Š” item์ด ๋Œ€ํ™”์—์„œ ๋‚˜์˜ค์ง€ ์•Š๋Š”๋‹ค๋ฉด, ์œ ์ € ์„ ํ˜ธ๋„๋ฅผ ๋ถ„์„ํ•˜๋Š” ๊ฒƒ์— ์žˆ์–ด์„œ ์–ด๋ ค์›€์ด ์žˆ๋Š” ๊ฒƒ์ด๋‹ค.

์ด์— ํ•ด๋‹น ๋…ผ๋ฌธ์€ CLICK์„ ์ œ์•ˆํ•œ๋‹ค. CLICK๋Š” ๋Œ€ํ™” ๋ฌธ๋งฅ ๋‚ด์—์„œ '์‚ฌ์šฉ์ž๊ฐ€ ์„ ํ˜ธํ•˜๋Š” item'์ด ๋“ฑ์žฅํ•˜์ง€ ์•Š์•˜๋”๋ผ๋„, ๋Œ€ํ™”๋งŒ์„ ํ†ตํ•ด context-level์˜ ์œ ์ € ์„ ํ˜ธ๋„๋ฅผ ํŒŒ์•…ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๊ฒŒ๋‹ค๊ฐ€ relevance-enhanced contrastive learning loss๋ฅผ ๊ณ ์•ˆํ•˜์—ฌ ์‚ฌ์šฉ์ž์—๊ฒŒ ๋””ํ…Œ์ผํ•˜๊ณ  ์„ธ๋ฐ€ํ•˜๊ฒŒ ์ถ”์ฒœํ•œ๋‹ค. (relevance-enhanced contrastive learning loss๋ฅผ ์ง์—ญํ•ด ๋ณด๋‹ˆ, 'ํŠน์ • ์š”์†Œ๋‚˜ ํŠน์ง•์„ ์ค‘์š”ํ•˜๊ฒŒ ์—ฌ๊ธฐ๋Š”, ์ธ์Šคํ„ด์Šค ๊ฐ„์˜ ์ƒ์ด์„ฑ์„ ์ธก์ •ํ•˜๋Š” ํ•จ์ˆ˜' ์ด๋‹ค.)

์—ฌ๊ธฐ์„œ CLICK์€ ์งˆ๋ฌธ์— ๋Œ€ํ•ด ๋Œ“๊ธ€๋กœ ์ถ”์ฒœ์„ ํ•ด์ฃผ๋Š” ์ปค๋ฎค๋‹ˆํ‹ฐ Reddit์˜ data๋ฅผ CRS task์— ์ด์šฉํ•œ๋‹ค. 


Introduction

์˜ˆ์ „ ๋ฐฉ์‹์ธ, ํด๋ฆญ์ด๋‚˜ ๊ตฌ๋งค ๋ฐ์ดํ„ฐ๋กœ ์‚ฌ์šฉ์ž์˜ ์„ ํ˜ธ๋„๋ฅผ ํŒŒ์•…ํ•˜๋Š” ๋ฐฉ์‹์€ ์„ ํ˜ธ๋„์˜ ๋™์  ๋ชจ๋ธ๋ง์ด ๋ถˆ๊ฐ€ํ•˜๋‹ค. (์ •์ ์œผ๋กœ ๊ทธ๋•Œ๊ทธ๋•Œ ์‚ฌ์šฉ์ž์˜ ์ทจํ–ฅ์„ ์กฐ์‚ฌํ•ด์•ผ ํ•จ.) ํ•ด๋‹น ๋ฌธ์ œ๋ฅผ CRS๊ฐ€ ์žก์•„์ค€๋‹ค. ์•„๋ž˜ ๊ทธ๋ฆผ์„ ๋ณด๊ณ  ์ฑ—๋ด‡์„ ์‚ฌ์šฉํ•ด ๋ณธ ๊ฒฝํ—˜์„ ๋– ์˜ฌ๋ฆฌ๋ฉด ๊ธˆ๋ฐฉ ์ดํ•ด๋œ๋‹ค.

๊ทธ๋Ÿฌ๋‚˜ ์ƒ๊ฐ์„ ํ•ด๋ณด๋ฉด, ์œ ์ €๊ฐ€ '๋‚˜๋Š” ์‚ฌ๊ณผ๋ฅผ ์ข‹์•„ํ•ด'์ฒ˜๋Ÿผ ๋Œ€ํ™”์—์„œ ์ž์‹ ์ด ์ข‹์•„ํ•˜๋Š” item์„ ๋…ธ์ถœํ•˜๋Š” ๊ฒฝ์šฐ๋„ ์žˆ์ง€๋งŒ, ์œ„ ๋Œ€ํ™”์™€ ๊ฐ™์ด ๋…ธ์ถœํ•˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ๋„ ์ƒ๋‹นํžˆ ๋งŽ๋‹ค. ํ•ด๋‹น ์ƒํ™ฉ์—์„œ ์‚ฌ๋žŒ์˜ ๊ฒฝ์šฐ์—๋Š” ๊ณ„์† ๋Œ€ํ™”ํ•ด ๋ณด๋ฉฐ ์ƒ๋Œ€๋ฐฉ์ด ์–ด๋–ค ๊ฒƒ์„ ์ข‹์•„ํ•˜๋Š”์ง€ ์˜ˆ์ƒ, ๊ฑฐ์˜ ํ™•์‹ ์„ ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐ˜๋ฉด, ์ฑ—๋ด‡์€ ์•Œ์•„์ฐจ๋ฆฌ๊ธฐ ์–ด๋ ต๋‹ค. ์ด์— CLICK์€ ๋ฌธ๋งฅ์—์„œ ์„ ํ˜ธํ•˜๋Š” item์„ ์œ ์ถ”ํ•˜๋ฉฐ, ํ•ด๋‹น ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ณ , ๋‚˜์•„๊ฐ€ ์‚ฌ์šฉ์ž์—๊ฒŒ ์„ธ๋ฐ€ํ•œ ์ถ”์ฒœ์„ ์ œ๊ณตํ•œ๋‹ค.

 

๊ณผ์—ฐ ์–ด๋–ป๊ฒŒ ํ•˜๋Š” ๊ฒƒ์ผ๊นŒ?

 

์šฐ์„  CLICK์€ knowledge graph(์ค„์—ฌ์„œ KG)์™€ Reddit data๋ฅผ ์ด์šฉํ•˜์—ฌ ๋Œ€ํ™”๋กœ๋ถ€ํ„ฐ context-level์˜ ์„ ํ˜ธ๋„๋ฅผ ์•Œ์•„๋‚ธ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์—ฌ๊ธฐ์„œ๋„ ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. ๋ฐ”๋กœ ๋ฐ์ดํ„ฐ๋“ค์˜ modality(์–‘์‹)์ด ๋‹ค๋ฅด๋‹ค๋Š” ๋ฌธ์ œ์ด๋‹ค. ์ด๋Š” ์ถ”์ฒœ๋œ ์•„์ดํ…œ๊ณผ ๋ฌผ์–ด๋ณด๋Š” text๋ฅผ ์ง์ง€์–ด ๋‚˜์—ดํ•˜๊ณ , ์กฐ๊ธˆ ํŠน๋ณ„ํ•œ contrastive learning์„ ์ง„ํ–‰ํ•˜์—ฌ ํ•ด๊ฒฐํ•œ๋‹ค.

๋ณธ๋ž˜ contrastive learning์ด๋ผ๊ณ  ํ•˜๋ฉด, positive์™€ negative์œผ๋กœ๋งŒ ๋‚˜๋‰˜๋Š”๋ฐ, ์—ฌ๊ธฐ์„œ๋Š” positive๋ผ๋ฆฌ์˜ ์ƒ๋Œ€์  ์—ฐ๊ด€์„ฑ์„ ๊ตฌํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์‚ฌ์šฉ๋˜๋Š” ๊ฒƒ์ด relevance-enhanced contrastive learning loss function์ด๋‹ค. (ํ•ด๋‹น ํ•จ์ˆ˜์— ๋Œ€ํ•ด์„œ๋Š” ๋’ค์—์„œ ๋” ์ž์„ธํ•˜๊ฒŒ ์„ค๋ช…๋œ๋‹ค.) ๊ฒฐ๊ณผ์ ์œผ๋กœ ์ด๊ฒƒ์„ ์‚ฌ์šฉํ•˜๋ฉด, entity์™€ context-level์˜ ๊ด€์  ๋‘˜๋‹ค๋กœ๋ถ€ํ„ฐ ์ถ”์ถœ๋œ ์ •ํ™•ํ•œ ์ถ”์ฒœ์„ ์ œ๊ณตํ•œ๋‹ค.


Related Work

1. CRS (Conversational Recommender Systems)

์•ž์„œ ์„ค๋ช…ํ–ˆ๋“ฏ์ด, CRS๋Š” ์ •์ ์ธ interaction history๋ณด๋‹ค ๋™์ ์ธ interaction์„ ๋” ๋งŽ์ด ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ CSR์€ ๋‹ค์Œ 2๊ฐ€์ง€๋กœ ๋ถ„๋ฅ˜๋  ์ˆ˜ ์žˆ๋‹ค:

  1. Template-based CRS
    • slot-filling method (๋นˆ์นธ์— ๋“ค์–ด๊ฐˆ ๋ง ์ฐพ๋Š” ๋ฐฉ์‹)๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค.
    • ์œ ์—ฐํ•˜์ง€ ๋ชปํ•œ ๋Œ€๋‹ต์ด ์ƒ์„ฑ๋œ๋‹ค๋Š” ๋ฌธ์ œ์ ์ด ์žˆ๋‹ค.
  2. Natural language-based CRS
    • ์œ ์ €๊ฐ€ free-text๋กœ ์š”๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค.
    • ์™ธ๋ถ€ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ์–ด๋–ป๊ฒŒ ์ •๋ณด๋ฅผ ์–ป์–ด๋‚ด๊ณ , ์‚ฌ์šฉ์ž ์„ ํ˜ธ๋„๋ฅผ ์•Œ์•„๋‚ด๊ธฐ ์œ„ํ•ด ํ•ด๋‹น ์ •๋ณด๋ฅผ ์–ด๋–ป๊ฒŒ ์‚ฌ์šฉํ• ์ง€์— ๋Œ€ํ•ด ์ง‘์ค‘ํ•œ๋‹ค.
    • ์™ธ๋ถ€ ๋ฐ์ดํ„ฐ๊ฐ€ ๋งŽ์•„๋„ free text๋กœ๋ถ€ํ„ฐ ์œ ์ €์˜ ๋‹ˆ์ฆˆ๋ฅผ ํฌ์ฐฉํ•˜๋Š” ๋Šฅ๋ ฅ์ด ๋ถ€์กฑํ•˜๋‹ค. (KG์— ์žˆ๋Š” item ํ•ญ๋ชฉ๋“ค๋งŒ ์‚ฌ์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ)
    • ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด contrastive learning approach๋ฅผ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ์–ธ๊ธ‰๋œ item๊ณผ text ๋‘˜๋‹ค๋กœ๋ถ€ํ„ฐ ์œ ์ € ์„ ํ˜ธ๋„๋ฅผ ์กฐ์‚ฌ ๊ฐ€๋Šฅํ•˜๊ฒŒ ๋งŒ๋“  ๊ฒƒ์ด CLICK์ด๋‹ค.

2. Contrastive Learning

self-supervised laerning์—์„œ ๋งŽ์ด ํ™œ์šฉ๋˜๋Š” ๋ฐฉ์‹์ด๋‹ค.

ํŠนํžˆ multi-modal์—์„œ ๋งŽ์ด ํ™œ์šฉ๋˜๋Š”๋ฐ, feature representation์„ ์ •์ œํ•˜๋Š” ๊ฒƒ์— ์žˆ์–ด์„œ positive ๋ผ๋ฆฌ๋Š” ๋” ์งง์€ ๊ฑฐ๋ฆฌ๋ฅผ negative ๋ผ๋ฆฌ๋Š” ๋” ๋จผ ๊ฑฐ๋ฆฌ๋ฅผ ๊ฐ–๊ฒŒ ํ•˜๋Š” ๋ฐฉ์‹์ด๋‹ค.

๊ทธ๋Ÿฌ๋‚˜, CLICK์—์„œ๋Š” relevance-enhanced contrastive learning loss๋ฅผ ๊ณ ์•ˆํ•˜์—ฌ ๊ฐ๊ฐ ๋‹ค๋ฅธ ์ƒ๋Œ€์ ์ธ ์œ ์‚ฌ์„ฑ์ด ์žˆ๋Š” ๋‹ค์ค‘ ์ถ”์ฒœ ์•„์ดํ…œ์„ ๊ณ ๋ คํ•œ๋‹ค.

Pre-training for Contextual Knowledge Injection

KG๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •์˜๋œ๋‹ค:  G = {(e1,r,e2)|e1,e2 โˆˆ E,r โˆˆ R} 

Reddit data๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ํ‘œ์‹œ๋œ๋‹ค: D = {(q, s, v, t)}

  • q๋Š” ์งˆ๋ฌธ์ž์˜ ์งˆ๋ฌธ
  • s๋Š” ์ถ”์ถœ๋œ ์•„์ดํ…œ
  • v๋Š” item์— ๋Œ€ํ•œ ์—ฐ๊ด€์„ฑ score (Reddit์—์„œ์˜ ์ถ”์ฒœ ์ˆ˜)
  • (์„ ํƒ) t๋Š” item ์ถ”์ฒœ์— ๋Œ€ํ•œ ์ด์œ 

pre-training ๋‹จ๊ณ„์—์„œ KG๋Š” KG-encoder์—, Reddit data๋Š” text-encoder์— ๋„ฃ๊ณ , (์œ„์—์„œ ์„ค๋ช…ํ–ˆ๋˜) relevance-enhanced contrastive learning loss๋ฅผ ์‚ฌ์šฉํ•ด์„œ train ์‹œํ‚จ๋‹ค. ์ดํ›„, ์‘๋‹ต ์ƒ์„ฑ๊ธฐ๋Š” ํ•„์š”์— ์˜๊ฑฐํ•˜์—ฌ ์ถ”์ฒœ์„ ์œ„ํ•œ ์‘๋‹ต์„ ๋‚ด๋†“๋Š”๋‹ค. ๋‹ค์Œ ๊ทธ๋ฆผ์„ ๋ณด๋ฉด ๋” ์ดํ•ด๊ฐ€ ์ž˜ ๋  ๊ฒƒ์ด๋‹ค.

1. Contextual Knowledge Injection

๋‹ค์Œ์€ encoding ๋˜๋Š” ๊ณผ์ •์„ ์„ค๋ช…ํ•œ๋‹ค. (์œ„ ๊ทธ๋ฆผ์„ ๋ณด๋ฉด์„œ ์ดํ•ดํ•˜๋ฉด ๋” ์‰ฝ๋‹ค)

  1. s๊ฐ€ KG-Encoder๋ฅผ ๊ฑฐ์ณ item embedding์ธ n_s๋กœ ๋ณ€ํ™˜๋œ๋‹ค.
  2. q๋ฅผ BERT์™€ Fully Connected Layer (FCN)์— ํ†ต๊ณผ์‹œ์ผœ ์ธ์ฝ”๋”ฉ ์‹œํ‚ค๊ณ , ๊ทธ๊ฒƒ์„ h_q๋ผ๊ณ  ๋ถ€๋ฅธ๋‹ค.

    hq = FCN(BERT(q))

  3. ์ดํ›„ ์„œ๋กœ ๋‹ค๋ฅธ modality๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด relevance-enhanced contrastive learning loss๋ฅผ ํ†ตํ•ด ๋‘ modality ๊ฐ„์˜ ์ผ์น˜๋ฅผ ์ด‰์ง„ํ•œ๋‹ค.

์œ„ ๊ทธ๋ฆผ์—์„œ v_(q, s)๋Š” reddit์—์„œ ๊ณต๊ฐ ์ˆ˜, S๋Š” positive set, S'๋Š” negative set์„ ๋‚˜ํƒ€๋‚ธ๋‹ค.

sim์€ ์ฝ”์‚ฌ์ธ ์œ ์‚ฌ๋„์ด๋‹ค.

 

์ „์— ์„ค๋ช…ํ–ˆ๋˜ loss function์„ ํ†ตํ•ด v_(q, s)์™€์˜ positive pair๋Š” ๋Œ์–ด๋‹น๊ฒจ์ง€๊ณ , negative pair๋Š” ๋ฉ€์–ด์ง„๋‹ค.

์ด๋Š” pre-trained encoder๊ฐ€ user์˜ ๋ฐœํ™”๋กœ๋ถ€ํ„ฐ ํฌ๊ด„์ ์ธ ์„ ํ˜ธ๋ฅผ ์•Œ ์ˆ˜ ์žˆ๊ฒŒ ํ•œ๋‹ค.

2. Learning to Explain Recommendation

๋‹ค์Œ์€ response, ์‘๋‹ต์„ ๋งŒ๋“œ๋Š” ๊ณผ์ •์ด๋‹ค.

๊ธฐ๋ณธ์ ์œผ๋กœ ํ•„์š”ํ•œ ํ•ญ๋ชฉ๋“ค์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค:

  • ์ถ”์ฒœ item
  • rationale (์ด์œ )
  • GPT-2

GPT-2์— item s์™€ utterance(๋ฐœํ™”) type์„ token embedding layer์— ๋„ฃ๊ณ , self-attention(A1) ์‹œํ‚จ๋‹ค.

์ดํ›„, BERT๋งŒ ๊ฑฐ์นœ context embedding h_ct์™€ ๋‹ค์Œ decoder block์— cross-attention(A2)์„ ์ˆ˜ํ–‰ํ•œ๋‹ค.

์ด๋Š” item suggestion ์ด์œ ๋ฅผ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•จ์ด๋‹ค.

A2 = FFN(MultiHead(O_A1,h_ct,h_ct))

์—ฌ๊ธฐ์„œ O_A1์€ A1์˜ output layer์ด๋‹ค.


Fine-tuning for Conversational Recommendation Task

์—ฌ๊ธฐ์„œ๋Š” CLICK์˜ CRS task ์ˆ˜ํ–‰์„ ์œ„ํ•œ fine-tuning ์ „๋žต์ด ์†Œ๊ฐœ๋œ๋‹ค. ์šฐ์„  ๊ทธ๋ฆผ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค:

CLICK์€ ์ฃผ์š” 2๊ฐœ์˜ ์ปดํฌ๋„ŒํŠธ๋กœ ๊ตฌ์„ฑ๋˜๋Š”๋ฐ, ํ•˜๋‚˜๋Š” ๋Œ€ํ™”๋กœ๋ถ€ํ„ฐ ์œ ์ €์˜ ๋‹ˆ์ฆˆ๋ฅผ ์•Œ์•„๋‚ด๋Š” ๊ฒƒ์ด๊ณ , ํ•˜๋‚˜๋Š” ํฌ์ฐฉ๋œ ์œ ์ € ์„ ํ˜ธ๋„๋กœ๋ถ€ํ„ฐ ์„ค๋“์ ์ธ ๋ง์„ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์ด๋‹ค. CLICK์˜ ๋ชฉํ‘œ๋Š” ์˜ฌ๋ฐ”๋ฅธ item s_c๋ฅผ ์ถ”์ฒœํ•˜๊ณ , system ์‘๋‹ต y_c๋ฅผ ์ƒ์„ฑํ•˜๋ฉฐ, ๋Œ€ํ™” history C๋ฅผ ์ดํ•ดํ•˜๋Š” ๊ฒƒ์ด๋‹ค.

1. Contextual Knowledge-enhanced Recommendation

๋Œ€ํ™” history C๊ฐ€ text-encoder์— ๋“ค์–ด๊ฐ€๋ฉด, context-level์˜ ์œ ์ € ์„ ํ˜ธ๋„ p_cl์„ ์–ป๊ฒŒ ๋œ๋‹ค.

pcl = FCN(BERT(C))

์ดํ›„, entity-level์˜ ์œ ์ € ์„ ํ˜ธ๋„๋ฅผ ์•Œ์•„๋‚ด๊ธฐ ์œ„ํ•ด p_cl๊ณผ ๋‹จ์–ด entity ์‚ฌ์ด์— cross-attention์„ ์ ์šฉํ•œ๋‹ค.

cross-attention score์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค:

์œ„์—์„œ W_q, W_k๋Š” weight, n_e๋Š” ์ œ๊ณต๋œ entity๋กœ๋ถ€ํ„ฐ์˜ entity embedding์ด๋‹ค.

์ดํ›„, ๋‹ค์Œ ์‹์„ ํ†ตํ•ด entity-level์˜ ์œ ์ € ์„ ํ˜ธ๋„ p_el๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค.

์ด๋ ‡๊ฒŒ ์–ป์€ p_el๊ณผ p_cl์„ ๊ฒฐํ•ฉํ•จ์œผ๋กœ์จ ์ตœ์ข… ์œ ์ € ์„ ํ˜ธ๋„๋ฅผ ์–ป๊ฒŒ ๋œ๋‹ค.

W๋Š” weight, [;]๋Š” concatenation ์—ฐ์‚ฐ์ž์ด๋‹ค.

 

2. Context-enhanced Response Generation

CLICK์€ ์‘๋‹ต์„ ์ƒ์„ฑํ•˜๊ธฐ ์ „, ๋ฐœํ™”์˜ ์ข…๋ฅ˜๋ฅผ ์ •ํ•˜๋Š”๋ฐ, ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์‹์„ ํ™œ์šฉํ•˜์—ฌ 3๊ฐ€์ง€๋กœ ๋ถ„๋ฅ˜ํ•œ๋‹ค:

(์œ„์—์„œ h_ct๋ฅผ BERT๋กœ๋ถ€ํ„ฐ ๋‚˜์˜จ context embedding์œผ๋กœ ์ •์˜ํ–ˆ๋‹ค.)

 

๋Œ€๋‹ต ์ƒ์„ฑ๊ธฐ์˜ ๋ถ„๋ช…ํ•œ ๋ฐฉ๋ฒ•์€ item๊ณผ ๋ฐœํ™” type์„ input์œผ๋กœ ์‘๋‹ต ์ƒ์„ฑ๊ธฐ์— ๋„ฃ๋Š” ๊ฒƒ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๊ฒƒ์€ ๋Œ€ํ™” ๋ฌธ๋งฅ์—์„œ์˜ ๋‹จ์–ด ์ƒ์„ฑ์„ ๋ฐฉํ•ดํ•œ๋‹ค๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค.

์ด์— cross-attention mechanism์„ ์‚ฌ์šฉํ•˜์—ฌ ๋Œ€ํ™” ๋งฅ๋ฝ์„ ํ•จ์ถ•์ ์œผ๋กœ ์ฃผ์ž…ํ•œ๋‹ค. ์ดํ›„์—๋Š” ๋งฅ๋ฝ์„ ๊ณ ๋ คํ•œ ๋‹ต๋ณ€์„ ์–ป๊ฒŒ ๋œ๋‹ค.

๋ฐœํ™” type๊ณผ ์ถ”์ฒœ๋œ item์ด token embedding์œผ๋กœ layer์— ๋“ค์–ด๊ฐ€๋ฉด, ์ฒซ decoder๊ฐ€ sel-attention์„ ์ˆ˜ํ–‰ํ•œ๋‹ค.

์ดํ›„, cross-attention mechanism๊ณผ h_ct๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋‹ต๋ณ€์„ ๋‚ด๊ฒŒ ๊ฐ•์š”ํ•œ๋‹ค.

generation loss ์‹์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค:


Experiment

benchmark CRS ๋ฐ์ดํ„ฐ์…‹์ธ REDIAL๊ณผ Reddit, DBpedia์—์„œ ์ถ”์ถœ๋œ KG๋กœ ์‹คํ—˜ํ–ˆ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์•˜๋‹ค.

recommendation task์˜ ๋ชจ๋“  ๋ถ€๋ถ„์—์„œ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค.
respnse generation task์˜ ๋ชจ๋“  ๋ถ€๋ถ„์—์„œ๋„ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค.


Conclusions and Future Work

relevance-enhanced contrastive learning loss๋ฅผ ์‚ฌ์šฉํ•˜๋Š” CLICK์€ ๋Œ€ํ™”์—์„œ ๋งฅ๋ฝ์  ์ง€์‹์„ ํŒŒ์•…ํ•˜์—ฌ ์œ ์ €์˜ ์„ ํ˜ธ๋„๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ํฌ์ฐฉํ•œ๋‹ค.

ํ–ฅํ›„ ์—ฐ๊ตฌ์—์„œ๋Š” ์ˆ˜๋™์ ์œผ๋กœ ๋Œ€ํ™”์—์„œ ์ฃผ์ œ๋ฅผ ํฌ์ฐฉํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹Œ, ๋Šฅ๋™์ ์œผ๋กœ ์œ ์ €์—๊ฒŒ ์ง์ ‘ ์ž์‹ ์˜ ์„ ํ˜ธ๋„๋ฅผ ๋งํ•˜๋„๋ก ํ™œ๋ฐœํ•œ ์งˆ๋ฌธ์„ ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•œ๋‹ค๊ณ  ํ•œ๋‹ค.

์ €์ž‘์žํ‘œ์‹œ (์ƒˆ์ฐฝ์—ด๋ฆผ)

'๐Ÿ“š ๋…ผ๋ฌธ' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€

Discovering New Intents with Deep Aligned Clustering  (0) 2023.08.16
A Probabilistic Framework for Discovering New Intents  (0) 2023.07.27
USTORY: Unsupervised Story Discovery from Continuous News Streams via Scalable Thematic Embedding  (0) 2023.07.11
GPT-1: Improving Language Understanding by Generative Pre-Training  (0) 2023.06.20
Attention is All You Need  (2) 2023.06.16
  1. Abstract
  2. Introduction
  3. Related Work
  4. 1. CRS (Conversational Recommender Systems)
  5. 2. Contrastive Learning
  6. Pre-training for Contextual Knowledge Injection
  7. 1. Contextual Knowledge Injection
  8. 2. Learning to Explain Recommendation
  9. Fine-tuning for Conversational Recommendation Task
  10. 1. Contextual Knowledge-enhanced Recommendation
  11. 2. Context-enhanced Response Generation
  12. Experiment
  13. Conclusions and Future Work
'๐Ÿ“š ๋…ผ๋ฌธ' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€
  • A Probabilistic Framework for Discovering New Intents
  • USTORY: Unsupervised Story Discovery from Continuous News Streams via Scalable Thematic Embedding
  • GPT-1: Improving Language Understanding by Generative Pre-Training
  • Attention is All You Need
์žฅ์˜์ค€
์žฅ์˜์ค€
groomielife
์žฅ์˜์ค€
youngjangjoon
์žฅ์˜์ค€
์ „์ฒด
์˜ค๋Š˜
์–ด์ œ
  • ๋ถ„๋ฅ˜ ์ „์ฒด๋ณด๊ธฐ (35)
    • ๐Ÿ“š ๋…ผ๋ฌธ (10)
    • ๐Ÿ’ป ํ”„๋กœ์ ํŠธ (14)
      • ๐ŸŽ“ RESUMAI (6)
      • ๐Ÿงธ TOY-PROJECTS (8)
    • ๐Ÿ“š ์Šคํ„ฐ๋”” (11)
      • CS224N (6)
      • NLP (5)

์ธ๊ธฐ ๊ธ€

ํƒœ๊ทธ

  • DEEPALIGNED
  • contrastive learning
  • NLP
  • MTP-CL
  • ์ž์†Œ์„œ์ƒ์„ฑํ”„๋กœ์ ํŠธ
  • GenAI
  • story discovery
  • NeuralNet
  • pinecone
  • ์ƒ์„ฑAI
  • ๋…ผ๋ฌธ
  • text embedding
  • project
  • ์ž๊ธฐ์†Œ๊ฐœ์„œ์ƒ์„ฑ
  • vectordb
  • RESUMAI
  • dj-rest-auth
  • gpt-1
  • Neural Net
  • CS224N
  • Haar-cascade
  • Representation Training
  • Conversational Agent
  • cv
  • ๋น„๋™๊ธฐ ์ €์žฅ
  • rag
  • allauth
  • DEEPLOOK
  • ArcFace
  • text clustering
hELLO ยท Designed By ์ •์ƒ์šฐ.
์žฅ์˜์ค€
CLICK: Constrastive Learning for Injecting Contextual Knowledge to Conversational Recommender System
์ƒ๋‹จ์œผ๋กœ

ํ‹ฐ์Šคํ† ๋ฆฌํˆด๋ฐ”

๋‹จ์ถ•ํ‚ค

๋‚ด ๋ธ”๋กœ๊ทธ

๋‚ด ๋ธ”๋กœ๊ทธ - ๊ด€๋ฆฌ์ž ํ™ˆ ์ „ํ™˜
Q
Q
์ƒˆ ๊ธ€ ์“ฐ๊ธฐ
W
W

๋ธ”๋กœ๊ทธ ๊ฒŒ์‹œ๊ธ€

๊ธ€ ์ˆ˜์ • (๊ถŒํ•œ ์žˆ๋Š” ๊ฒฝ์šฐ)
E
E
๋Œ“๊ธ€ ์˜์—ญ์œผ๋กœ ์ด๋™
C
C

๋ชจ๋“  ์˜์—ญ

์ด ํŽ˜์ด์ง€์˜ URL ๋ณต์‚ฌ
S
S
๋งจ ์œ„๋กœ ์ด๋™
T
T
ํ‹ฐ์Šคํ† ๋ฆฌ ํ™ˆ ์ด๋™
H
H
๋‹จ์ถ•ํ‚ค ์•ˆ๋‚ด
Shift + /
โ‡ง + /

* ๋‹จ์ถ•ํ‚ค๋Š” ํ•œ๊ธ€/์˜๋ฌธ ๋Œ€์†Œ๋ฌธ์ž๋กœ ์ด์šฉ ๊ฐ€๋Šฅํ•˜๋ฉฐ, ํ‹ฐ์Šคํ† ๋ฆฌ ๊ธฐ๋ณธ ๋„๋ฉ”์ธ์—์„œ๋งŒ ๋™์ž‘ํ•ฉ๋‹ˆ๋‹ค.